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A Dual Task Analysis of Controlled

and Automatic Detection

Jaries E. Hoffman and Fillie Nelson

0Department of Psychology

- and tvark Laubach

PLATO Project

Funning bead: Controlled and Automatic Detection

Abstract

The secondary task methodology was used to measure the
resource demands of controlled and automatic detection. Subjects
were required to perform e secondary task of locating a flickering
light together with a primary task of visual letter detection.
Secondary task performance was lower when combined with the search
task than in corresponding single channel control conditions. In
addition, this decrement was approximately the same for both
controlled End automatic detection. Similarl , both controlled and
automatic detection lztencies were increased in the presence of the
secondary task and by the same amount. Controlled and automatic
detection evidently share common resource demanding components.
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This parer is concerned with the question of whether highly
practiced and presumably automatic tasks can be performed in
conjunction with other tasks without mutual interference. We will
show that, at least for the case of automatic detection of letters,
"automatic" processes may both provide and be subject to
interference with other tasks.

Automaticity in visual search

Visual search is a task for which the concepts of resources
and automaticity are well defined. A variety of experiments
initiated by Eriksen and Spencer (1969) and continued by Shiffrin
and colleagues (Shiffrin and Gardner, 1972; Shiffrin and Grantham,
1974) indicate that the major limitation in performing simultaneous
tasks is comp:etition for "post- perceptual" (lecision, rehearsal,
and response execution processes in short-term memory. In the case
of visual search for a target letter in a display of letters, speed
of search is limited by the rate at which subjects can compare
encoded representations of the display letters to the target set in
short-term memory. Schneider and Shiffrin (1977) showed that
extensive practice in looking for the same set of characters
(consistent mej.ping training) can result in search becoming
"automatic." In automatic searclh, presentation of a target letter
produces an automatic attention response in which the subject's
attention is automatically drawn to the spatial position of the
target. Depending on the task, an entire chain of processes may be
initiated resulting finally in the production of an overt response.
This sequence does not require active attention on the part of
subjects for successful completion and indeed apparently cannot be
inhibited.

This characterization of automatic detection suggests that its
demands on short-term memory are minimal and therefore should
provide little interference with other concurrent activities.
Actually some interference can be expected due to the "automatic
attention" response. For example, Schneider and Shiffrin (1977)
showed that consistently mapped targets occurring in to-be-ignored
display positions tended to disrupt the slow "controlled search"
for other targets.

A somewhat different characterization of automatic search was
provided by 11offman (178, 1979) in terms of a two-stage model of
visual search. In the first stage, all of the display letters are
encoded in a 1oarallel, unlimited capacity system. This stage
produces, in addition to encoded representations of the display
letters, a rough index of the likelihood that each display letter
is a member of the memory set. This index is used both to
determine the order in which display letters are transferred to
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short-term memory for the serial comparison operation as well as
providing a basis for making fast decisions. Consistent mapping
training results in all of the decisions being based on the output
of the initial, parallel stage.

This position differs from Schneider and Shiffrin's
characterization of automatic search in two ways. First, it leaves
open the possibility that the reading of information provided by
the initial parallel stage is not automatic and may provide a basis
of task interference for both controlled and automatic search.
Second, it suggests that spatial allocation of attention does not
occur in automatic detection.

A dual task experiment

The question of whether automatic search utilizes resources
might be answered through use of the secondary task methodology.
In this case, the subject would be instructed to perform the
primary task of visual search in conjunction with a secondary task.
Performance on the secondary task presumably reflects the total
resources that are not bcing used by the primary task.

Pigure 1 shows the particular secondary task employed in this
experiment. In single task conditions, the

Insert Figure 1 About Here

subject indicates whether or not a member of a predefined memory
set is present in a visual display of letters. The subject's
reaction time (RT) is the variable of interest. Letters are either
consistently mapped (CM) or varied mapped (VM) which leads to
automatic and controlled search respectively (Schneider and
Shiffrin, 1977). Search is presumably automatic when RT is
independent of memory set size and display size.

The other task (flicker location) requires the subject to
indicate which of 8 points of light arranged around the inner
perimeter of the letter display is briefly extinguished at the
moment the letter display is presented. In dual task conditions
this response is made after the letter detection response.
Location accuracy is the variable of interest. This particular
task was emp loyed for several reasons. It appeared to be a
relatively simple perceptual discrimination which would impose
minimal demands on short-term memory capacity. It was also
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sufficiently dissimilar to the letter search task to be an unlikely
source of "structural interference" (Kahneman, 1973). Finally it
offered the possibility of providing an objective measure of the
role of spatial attention in visual search. For example, if the
letter target draws attention we might see superior detection of
the flicker information when it is in close spatial proximity to
the target letter. Similarly, if attention is allocated to the
flicker position we should see fast detections of target letters
adjacent to the flicker.

In summary, the resource demands of controlled and automatic
search are to be measured in terms of performance of a secondary
task of flicker detection. The role of spatial attention in these
two search modes is to be measured in terms of dual task
interactions when the flicker and target letter are in proximate
spatial positions.

Method

Subjects. Subjects were 14 males and 14 females with normal
or corrected to normal vision.

Apparatus and Stimuli. Presentation of visual displays and
timing was provided by a PLATO V terminal which has a plasma panel
screen. Timing was provided by the terminals microprocessor and
had a period of approximately 7 msec. Letters and masks were .3 x
.23 of visual angle in height and width respectively and were
defined on a 9 x 7 dot matrix. Letters appeared in a circular
display with a diameter of 4.5°of visual angle. The dot used for
the flicker task subtended .070 of visual angle. Subjects responded
by pressing keys on a typewriter style keyboard.

Procedure. Each subject served in 10 sessions, each
consisting of 9 blocks of trials. Each pair of sessions
represented a complete replication of the experiment: 2 memory set
sizes (I or 4) x 2 display set sizes (2 or 8) x 2 rmapping
conditions (consistent or varied mapping) x single/dual channel.
In addition, each session contained a single block devoted to
performance of the flicker task alone.

Each block of trials consisted of 48 trials, half of them
c)ntainlng a target letter (a member of the memory set) and half
containing only distractors. On each trial, the

i & m E ''J ", ' .. . .. .. MW
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subject was presented with a memory set which remained on view
until the subject initiated the trial sequence.

A fixation cross appeared in the center of the screen followed
by a sequence of 3 arrays. A typical sequence is shown in Figure
1. A set of 8 premasks appeared for 250 msec. Next the premasks
were replaced by the letter array with blank positions containing a
$ symbol. This display remained on until the subject responded.
Simultaneously with the onset of the letter array, one of the 8
light points was extinguished for 28 msec. and then illuminated
again. In search only blocks, this flicker was to be ignored. In
dual task conditions, the subject was to report which of the 8
light points had flickered. This report was made after the subject
made his/her search task decision. At the end of each trial the
subject received feedback concerning the accuracy of response on
each task and the latency of the search task response.

The subject initiated each trial with his/her left hand and
responded yes/no as to the presence or absence of a memory set
letter in the display by pressing one of two keys with the right
hand. In flicker only blocks, the subject was still required to
execute a motor response with the right hand but this response was
unrelated to the stimulus. In these blocks the entire display
consisted of the symbol "$".

In consistent mapping (CM), the memory set letters were always
taken from the set G, C, Q, S and distractors from the set L, T, X,
Pi. In varied mapping (VM), memory set elements were taken either
from the set R, E, N, F or P, V, D, IH with the distractors chosen
from the alternate set. Each VM set was used equally often as
target or distractor sets in each block in a random order.

The assignment of letters to positions in the display was
random. After assignment of a target letter to a display position,
on target-present trials the flicker location was determined
according to the following schedule. There were 5 flicker-target
"distances". A distance of 0 corresponds to the flicker occurring
adjacent to the target while a distance of one corresponds to the
flicker being one position removed from the target letter (either
clockwise or counterclockwise) and so on. Each of these 5
distances occurred equally often in each condition. Notice that
this procedure introduces a small statisticEl dependency between
the locations of the flicker and target letter.

* i -,
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The order of blocks within a session was random within the
constraint that each block occur in each presentation position
equally often. In addition, each subject received the identical
order of the blocks across sessions.

Subjects were instructed to treat the letter search task as
p rimary and the flicker task as secondary.

Re sul ts

Flicker Location Accuracy. Recall that performance on the
secondary task of flicker location was presumed to reflect the
resource demands of controlled and automatic search tasks. Figure
2 shows percent correct flicker location as a function of memory
set size and display set size for both CM, and V'M search.

Insert Figure 2 About here

These data make it quite clear that both kinds of search complete
for a resource required in localizing the flicker. In addition,
the difficulty of the search task, as indexed by the product of
memory set size and display set size, influenced flicker location
perforrance. The highest load (memory set = 4, display set = 8)
caused a small drop in performance relative to the other load
conditions. Surprisingly, this effect of load is present even for
CM search which actually produces slightly more interference than
VM search. Given that secondary task performance is a measure of
the resources utilized by the search task, we conclude theat both
automatic and controlled search require use of some limited
resource and to approximately the same extent. This resource
competition is more severe when the number of comparisons recuired
for the search task is increased. This load effect occurs only for
very high loads and is small compared to the ovcrall decrement that
results from simply combining the two tasks.

A repeated measure analysis of variance of these data revealed
a significant effect of consistent vs. varied mapping
(F(1,24)=5.9, p<.V5) as well as the interaction of memory set size
and display set size (F(1,24)=8.C)

Search Reaction Time. The average correct reaction time for
the search task as a function of processing load, varied vs.
consistent mapping, single vs. dual channel, and response type
(positive or target present vs. negative or target absent) is

Id*
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shown in Figure 3. Consider first the single channel performance

Insert Figure 3 About here

represented by the solid lines. The logarithmic scale used for
p-rocessing load disguises the linear relation between WST and
processing loa for VM search. The slope for positive data was
27 2 msec. (r =.1'6) and of that the negative data 47.0 usec.
(r =. 98) . In contrast, PT: for Cm" search was relatively independent
of load for both positive and negative responses.

An additional finding, not a-parent in this figure, concerns
the load=L condition. hTs here can be separated into t.o types:
M=l, D=E, and N=4, D=2. Despite the fact that these t%.o conditions
have similar processing loads, in terms of the product of memory
set size and display set size, they produce quite different
performance. Vhe ?i=4, r=2 condition w¥as 9E msec. slower than the
N=i, D=8 condition for VM search. This held true even for the CN
condition which showed an effect of 123 Fsec. Excebt for the
latter finding concerning CNI search, these results replicate the
findings of Schneider and Shiffrin (l£77).

The slower search NT in the '4, E2 condition relative to the
?=i, D=[P condition for Civ search is probably due to confusability
effets. In the D=2 condition, six of tlie display positions
contained the symbol "$" which was physically similar to one of the
Cm memory set items (S). .:iith a memory set of 4 there was greater
confusability between the memory set and display characters. It
should be noted that this effect was present even for the last
session pair and was still sizable (80 Pmsec).

This effect, if it can be replicated in other types of CV
search, is of potential importance in understanding the nature of
automatic detection. For example, suppose that automaticity was
obtained by "unitizing" the individual remory set elements into Z
higher order structure. If the subject based his/her decision on
the activity in this structure for all memory set sizes, then
search 1T would be inde[pendent of memory set size. This riodel
ould predict that Yv=I, P=2 and iv=4, D=2 conditions would produce

ecuivalent search latencies which they do not (481 vs. 562 nsec.
for the last session .air). This suggests that in CM search the
subject is not using the same memory set information independent of
memory set size. Emaller memory sets allow the subject to reduce
confusability between memory set items and display items that is
present for larger sets.
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Dual Task reaction times: Figure 3 shows that the search RT
%,as increased when subjects had to perform the flicker location
task in addition to the letter search task. This effect is largely
additive with respect to the mapping, load, and response type of
the search task suggesting that the addition of a secondary task
added a constant time to the search p rocess. There is however, a
small but significant interaction between search load and single
vs. dual task conditions. For example, in VM search the RT
difference between load=l and load=32 is 1160 msec. for the single
channel condition and 1241 msec. for dual channel conditions. The
corresponding values for CM search are 30 and 100 msec.

A repeated measures analysis of variance on these data
revealed that the effect of single vs. dual channel was
significant (F(i,24)=37.S , p<.Cl) and did not interact with whether
search was CM or VM (F(1,24)<1). Single vs. dual channel did
interact with processing load (F(1,24)=16.5, p<.0I) and to about
the same extent for CMI and V M search (F(1,24)=3.0, p>. 0 5 ).

Practice effects. Figure 4 shows how dual task performance
changed with training. The top, two panels show how the slope of
the

Insert Figure 4 About ,ere

LT vs. load function (averaged across positive and negative
responses) varied across sessions. Notice that Cv, search latency
was almost immediately indeFendent of load effects due to the low
confusability between memory set and distractor items. Adding the
secondary task initially induced a load effect but in the remaining
sessions Cm search remained relatively free of load effects.

VM search shows a remarkably stable slope across sessions
confirming the results of Kristofferson (1972). Occasional small
increases in slope can be observed in the dual task conditions
relative to the single task condition.

The middle panel confirms the inferences drawn from figure 3.
,he [:rincil:le effect of adding the flicker location task is to add
el constant to search PT reflected by an increase in the intercept
of the rT vs. load function. This constant effect shows little
sign of diminishing over sessions for either V or CM search.



Page 8a

PERCENT CORRECT
00FLICK~ER ACCURACY INTERCEPT (MSEC.) SLOPE (MSEC.)

0) 1-

0 (A

3E r
~10 0 ip

pi * 04
r r

zrr r

0

0

W I

0 a

rt~ Ip

0

I-h

0



Page 9

The bottom Fanel shows flicker location accuracy as a function
of load over sessions. high load refers to the M=4, C= condition
while low load is the average of performance on the remaining three
load conditions. Once again it can be seen that secondary task
performance reflected the load imposed in the search task. This
load effect remained relatively constant over sessions for both CM
and VM search. The exception is the last session pair in the CM
condition in which the load effects are eliminated. This is
surprising in view of the lack of load effects exhibited in terms
of RT on the CM search task. Eowever, the slope measure does
obscure small load effects. Table 1 shows 1T as a function of load
for the last tAo

Insert Table 1 About here

session pairs in the CM condition. Notice that in the single
channel condition there is a large decrease in the FT's in the 1-4,
D=V condition as subjects move from session pair 4 to 5. This
decrease in primary task load effects is faithfully reflected in
the abolishment of the load effects on secondary task performance.
Notice however that a large overall effect of dual channel
condition remains in the CM FT's as well as the flicker location
accuracy.

Spatial Adjacency effects. Table 2 shows the way in which
correct search FT depended on distance from the flicker location
for CM and VM search. For VM search, targets

Insert Table 2 About Here

were detected about 100 msec. faster when they occurred ajacent to
the flicker (cistance=0) relative to other positions. The time to
detect the CNI target was independent of distance from the flicker.
This distance x mapping interaction was significant (F(4,108)=3.0,
p< .05).

A similar pattern appears to hold for search accuracy. Table
3 shows the probability of a "hit" given that the

Insert Table 3 About Here

--
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flicker location was correct. For VM, search, subjects were
significantly nore likely to detect the target when it arpeared
adjacent to the flicker (F(4,l0F)=3.5, p<.C5). For CMi search,
there is r suggestion of such an effect but it was not significant

Table 4 shows that distance between the flicker and target

Insert lable 4 About }iere

letter did influence flicicr location accuracy. Flicker location
was more accurEte .hen adjacent to the target letter for
VM(1(4,108)=lC.l, rI<.01) inc Cm (E(4,104)=6.7, p<.Ol) search.
Unfortunately this effect is almost surely due to a bias to guess
the target letter location as the flicker location. This could be
evaluated directly by examining the distribution of location
responses on trials w-en tlie subject was incorrect. Unfortunately
these data were not retained. liowever two findings suggest a
guessing interl-retation. The effect of location did not interact
with load for Vro search (I(4,108)<l) even though the average PT for
the P=4, D=& target- Ipresent condition was 157) rsec. This would
be too late to affect the processing of the flicker information.
Second, in subsequent work we have eliminated guessing effects and
have not observed any effect of target letter-flicker distance on
flicker accuracy.

A two state attention model. It would be useful to review the
major effects of time-sharngvisual search with a secondary task
of flicker location. As a first approximation, the effect of
adding the flicker task to the search task is to add a constant to
both CM and VM search time. Similarly, the flicker task accuracy
is reduced by a constant when combined with either Cm or VM search.
These effects can be accomodated by a simple two-state attention
switching model. We assume that on each trial in dual channel
conditions, with some probability 1, the subject ignores the flicker
task and performs the search task with speed t. With probability
1-p, the subject performs the flicker task attaining the accuracy
obtained in the flicker-only condition (c). Search is delayed by
tine .At. This leads to the following expressions:

(1) F=pg+ (l-p) c

(2) t= (l-p) t
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where f is the observed flicker performance, g is the flicker
guessing rate (.125) and tf is the time required to perform the
flicker discrimination.

Solving expression 1 for p yields a value of .54.
Substituting this value in expression 2 yields an estimate of
tf=3c.8 nsec.

his model although attractive in giving a simple account of
the major features of the data faces two difficulties. First, the
model suggests that subjects attempted the flicker task on 56% of
the trials which seems high in light of the instructions to treat
it as secondary. Second, this model suggests that fast PT's should
be associated with low flicker accuracy. To evaluate this
prediction we took the entire distribution of correct CM reaction
times in dual task conditions for the last 2 session pairs and rank
ordered them. This distribution was divided into quarters and the
associated flicker accuracy computed for each interval. These data
are shown in Table 5.

Insert Table 5 About fiere

It is clear that there is no relation between speed of searclh and
flicker accuracy which is directly contrary to the predictions of
the model.

1?lthough the two state switching model seems to be an unlikely
explanation for our time-sharing data we might still retain some of
its aspects. Many subjects commented that they first discr'minated'
the flicker information Fnd then began the letter task. The
accuracy of the flicker information that is obtained and also the
amount of delay imposed on the search task may be determincd by the
time the subject samples the flicker channel based on instructions
regarding the relative emphases placed on the two tasks. This
approach will be considered in the discussion.

Pi sucssion

The purpose of the present experiment was to examine the
resource demands of controlled and automatic search by pairing them
with a secondary task of flicker location. There are three main
findings which speak to the nature of resources used in thesc two
search modes.K _______ ____________________



Page 12

First, we found that there was mutual interference between
flicker location accuracy and either controlled or automatic
search. Flicker location accuracy was lower when combined with
both search tasks relative to when it was the subjects only task.
Similarly, search latency was increased relative to single task
performance when combined with flicker location. This increase was
approximately the same for both search modes and was virtually
independent of search load.

Our second finding concerns the effects of confusability
between memory set items and distractors in automatic search. We
found that .hen the display contained distractors ($'s) which were
highly similar to one of the letters in the CM memory set (S), RT
was increased relative to a display containing non-confusable
distractors. This effect of distractor confusability was greatly
reduced when the subjects used smaller memory sets indicating that
they had some control over the information used in the search
decision.

Our third finding is that VM search accuracy and speed was
improved when the target occurred near the location of the flicker.
CM search latency and accuracy were relatively unaffected by the
spatial proximity of flicker and target letter. These results
suggest that spatial attention can improve performance in
controlled processing but not automatic processing.

'These results can be understood within a framework that offers
a specific mechanism for producing load and confusability effects
in recognition memory procedures similar to the search task
utilized here. Ratcliff (1978) has recently introduced such a
framework in the form of a resonance metaphor. Each of the
elements in the memory set can be represented by a tuning fork.
Presentation of a probe produces activity in each element in
p-arallel. The degree of activity is a function of the similarity
or relatedness between the probe and memory set element. The
decision strategy is to say "yes" if activity in any tuning fork
exceeds some positive criterion and respond "no" when activity in
all forks reaches some negative criterion.

This model is embodied in a random walk process. The probe
can be viewed as set of features. Each matching feature drives the
random walk process toward a positive "absorbing barrier" while
mismatching features drive the process toward i, negative barrier.
It is convenient to view the accumlation of these features as a
serial process occurring over time. Thus if subjects can control
the number of features to be sampled (or sampling time), they can
improve their accuracy by extending the sam[pling time. This latter F

... . ll m 1 ]2 
I ~ H i '
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feature allows the model to account for speed-accuracy trade-off
effects in reaction time.

M'emory set size effects arise in this model because, on
negative trials, R7 is determined by the slowest comparison
p rocess. This value increases with increases in the number of
comparisons. On positive trials, the match (or relatedness)
between the I:robe and its corresponding memory set element declines
with increasing memory set size. No specific mechanism is advanced
for this latter effect; it might be that relatedness is partially
determined by a serial rehersal of memory set information. This
model has not yet been extended to the domain of visual search in
which more than a single probe is presented. hI-owever it can be
seen that at least qualitatively the model would predict an
interaction between memory set size and display size. Increases in
display size increase the number of potential features m:latching
those in the memory set producing longer comparison times.

In this context, automatic search may occur when, through the
Irocess of training, the relatedness between memory set elements
and distractors becomes very small. In such cases, increases in
set size have virtually no effect on reaction time (Ratcliff,
197F).

Let us now consider how this model offers a perspective on the
three findings outlined earlier.

Task interference occurs because the subject can only perform
one discrimination at a timc. In the present experiment, it is
likely that subjects first performed the flicker task and then the
letter search task. The information required f'r performance of
the flicker task (onset and offset of light) is of the "transient"
variety and is conducted along visual pathways faster than the
"sustained" form information required for performance of the search
task (Enroth-Cugell and Robson, 1960). lBe assume that the subject
uses "time-controlled processing" to sample information for the
flicker discrimination. That is, information is sampled for some
criterial time and a decision is based on that accumulated
information. This sampling time shows up in the search }PT as a
constant increment for both controlled and automatic Frocessing.
When flicker location is the only task to be performed the sampling
time can be extended producing increases in accuracy. Thus the
model predicts the pattern of task interference that was obtained.

I li ___ _.____....____ ___
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This model also accounts in a straightforward way for the
confusability effects found in CM search. Even through the filler
character ($) received consistent mapping throughout the
exi.eriment, its high degree of similarity to the letter "F"
produced long comparison times even at the end of training. when
subjects used smaller memory sets, these long comparisons were
excluded producing fast responses.

The observed spatial adjacency effects in VM search suggest
that attention to the spatial position of the target can speed
target detection. This is consistent with other experiments
showing that targets are detected faster when attention is
explicitly directed to their vacinity (Eriksen and hoffman, 1972;
Logan, 1S78). An attentional mechanism may be added to the random
walk model by assuming that attention to a position biases the
order in whicl features enter the random walk discrimination
Irocess. In Vf search, this bias produces faster and more accurate
hits. In CM: search, where few features are required to classify a
letter as being positive or negative, this bias will be much less
effective.

Our results show that the interference between the search and
flicker tasks is largely additive with respect to all aspects of
the search process (load, mapping, and response type). however
small but significant effects of load could be seen superimposed on
the main effect of task combination. Similar effects can be
observed in Logan (197C,1979). Isreal, Chesney, tickens and
Donchin (1980) recently examined the magnitude of the P300
component of the human evoked potential as an index of attention.
They found that the P300 elicited by tones to be counted was
reduced in the presence of a concurrent tracking task but was
relatively unaffected by the difficulty of the tracking task.
There arpeared to be a small effect of tracking difficulty on P3C
amplitude but it was not significant.

Several different sets of results then agree in showing that
tasks with apparently quite desparate resource reouirements nay
interfere with each other. This pattern of interferences is
largely additive with respect to the difficulty of the tasks. %e
interpret this additivity in terms of a "discrimination Frocess"
which can handle one task at a time. What then is the source of
the interactions that have been observed? The interaction suggests
some sharing of resources between tasks. Certainly one source of
sharing in visual search tasks is a rehearsal process. Subjects
engage in rehearsal of the memory set letters before and during the
trial. These rehearsals effect the speed of the recognition
process such that presentation of a probe in close temporal
proximity to its corresponding rehearsal results in fast
recognition decisions (Seamon, 1976; Seamon and Wright, 1976). It
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seems likely that the encoding of the flicker position caused an
interruption of the rehearsal process. This loss of "priming" from
the rehearsal process may be the reason for the small increases in
the slope of the RT vs. load function observed in dual task
conditions.

A similar ex|planation may underlie the small load effects seen
in flicker accuracy. The rehearsal process required for the
largest load conditions may have competed with the encoding of the
flicker location accuracy. The elimination of load effects on
flicker location seen in the last session pair for CM search may
reflect the .ithdrawal of the rehearsal 1-rocess with the
development of automaticity.

Thus, the major way in which tasks compete may be through a
Frocess of "attention switching" in which a discrimination process
can operate on but one task at a time. lIo.ever, a smell component
of interference is due to "attention sharing" in which processes
utilized by two tasks mEy overlap in time. These conclusions are
similar to those reached by Sperling and Ivelchner (1978). They
concluded that for the case of twao concurrent visual search tasks
both switching and sharing were utilized.

Conclusion. A secondary task experiment showed that both
controlled and automatic search require a common mechanism. The
pattern of interference between the search tasks and a secondary
task of flicker location suggested that both search modes require
the use of a discrimination mechanism which can operate on one task
at a time.
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